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ABSTRACT: It has been observed that information measures participate in designing various techniques for 
the development of mean codeword lengths. The present communication providing the applications of 
entropy measures for the development of new codeword lengths is a step in this direction. Moreover, our aim 
is to provide a deeper insight into the problems of correspondence between weighted mean and possible 
weighted entropy through the possible measures of weighted divergence. 
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I. INTRODUCTION 

In the literature of entropy measures, one of many 
applications will be to the problem of efficient coding of 
messages to be sent over a noiseless channel, that is, 
our only concern is to maximize the number of 
messages that can be sent over the channel in a given 
time. Let us assume that the messages to be 
transmitted are generated by a random variable X and 
each value xi, i = 1, 2,…., n of X must be represented by 
a finite sequence of symbols chosen from the set 

1 2
{ , , ..., }

D
a a a . This set is called code alphabet or set 

of code characters and sequence assigned to each xi, i 
= 1, 2, …., n is called code word. While dealing with 
coding theory, Kraft’s (1949) inequality participates with 
a central role.  With D as alphabet size and ni  the length 

of code word associated with ix
 
this inequality is given 

by 
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n niD
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=

                                            (1) 

In communication theory, we usually come across those 
codes which minimize the following code word length: 
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n
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i
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=
                                                                (2) 

Taking into consideration Belis and Guiasu’s (1968) 
entropy, Guiasu and Picard (1971) defined the following 
quantity as weighted mean codeword length: 
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Kapur (1998) introduced implicitly exponentiated mean 
of order α and type a viz. 
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and showed that its lower bound for uniquely 
decipherable codes was also between Rα(P) and Rα(P) 
+ 1

 
where Rα(P) is Renyi’s (1961) entropy. In fact this 

gave an infinity of exponentiated means of order α for 
different values of a between 0 and 1. For a = 1 it gave 
Campbell’s (1965) exponentiated mean and for 0a = it 

gave another exponentiated mean as
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which was called Kapur’s (1998) exponentiated mean of 
order α . All the infinity of exponentiated means of order 

α  have the same lower bounds Rα(P) and Rα (P) + 1. 

This proves an important result that while a given mean 
can have only one pair of lower bounds, one pair of 
lower bounds can correspond to infinity of mean code 
word lengths. 
Various measures of information along with their 
applications to coding theory have well been discussed 
by Kapur (1998). In coding theory, generally we don’t 
consider the problem of error correction but our only 
concern is to maximize the number of messages. 
Thus, we find the minimum value of a mean codeword 
length subject to a given constraint on codeword 
lengths. However, since the codeword lengths are 
integers, the minimum value will lie between two bounds 
and a noiseless coding theorem seeks to find these two 
lower bounds for a given mean and a given constraint. 
 Various measures of information along with their 
applications to coding theory have well been discussed 
by Joshi and Kumar (2018), Kawan and Yüksel (2018), 
Lee and Chung (2018), Wondie and Kumar (2017), 

e
t
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Reviewed and Ferreira (2019), Frumin, Gelash and 
Turitsyn (2017), Hayashi (2019) etc.  

II. CORRESPONDENCE BETWEEN INFORMATION 
MEASURES AND CODING THEORY 

Below, we demonstrate the connection between entropy 
measures and the codeword lengths. 
(i) Codeword Lengths through Divergence Measures 
Here, we develop certain exponentiated mean 
codeword lengths already existing in the literature of 
coding theory. 

Theorem 2.1: If 1 2 3, , ,..., nn n n n are the lengths of a 

uniquely decipherable code, then  
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where 
, ,
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 k  is some 

real constant, ,r s are real parameters, ( )
r
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Kapur’s (1967) entropy and  
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are Kapur’s (1998) mean codeword lengths. 
Proof. The following divergence is due to Kapur (1994): 
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Since ( ): 0K P Q ≥ , letting 
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expression gives 
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The equation (7) further gives 
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 is Kapur’s (1986) 

additive measure of entropy. 
Special cases 

1. For 1k = , (7) becomes 
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where 
,
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( 1) ( 1)r s

r sL r L s L
r s

 = − − − −
  

is the exponentiated mean of order r and type S and 

( )r
sH P  is  Kapur’s (1986) entropy of order r and type 

s . 

Now, since 

1
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D
−

=

∑ always lies between D
-1

and 1, 

equation (8) shows that the lower bound for Lr,s  lies 

between ( )r
sH P and ( ) 1r

sH P + . 

2. For 1, 1k s= =  (7) becomes 
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≥ − ∑ where rL is r order 

mean and ( )rR P is Renyi’s (1961) entropy. This proves 

that rL ’s lower bound lies between ( )rR P  
and ( ) 1rR P + .

  
3. For 1, 1k s= = and 1r → , (7) provides the following 

expression: 
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Where H (P) is Shannon’s (1948) entropy.  
This proves that L ’s lower bound lies between ( )H P and 

H(P)+1. 
(ii) Deriving Existing Codeword Lengths  
Here, we make available Campbell’s (1965) and 
Shannon’s (1948) mean codeword lengths. 

Theorem 2.2: If 1 2 3, , ,..., nn n n n are uniquely 

decipherable codeword lengths, then 
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where 0, 1s s> ≠ .    

Proof. We know that Holder’s inequality is given by 
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Reshuffling the terms, we get (9). It is observed that (9) 
provides relation between entropy and non-mean 
codeword length.  
Particular Cases: 
Case-I: Taking s D= , (9) becomes 
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This inequality provides relation between Campbell’s 
(1965) codeword length and Renyi’s (1961) entropy. 
Case-II: Letting 1s → in (9), we get  
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 The inequality (12) provides relation between 
Shannon’s (1948) entropy and the standard codeword 
length. 
(iii) Relation between Weighted Mean and Possible 
Weighted Entropy  
We first of all define the following weighted mean:   
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which is Guiasu and picard’s (1971) weighted mean. 
Thus, we see that the weighted mean introduced in (13) 
is a generalized weighted mean. 
Next, we provide the correspondence between weighted 
mean and possible weighted entropy through the 
possible measures of weighted divergence. 

Theorem 2.3: If  1 2, ,..., nn n n  be the lengths of 

uniquely decipherable codes, then 
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Proof: To prove the above theorem, we make use of the 
possible weighted divergence given by 
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This is to be noted that upon ignoring weights, measure 
(14) reduces to  
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which is Kapur’s (1994) divergence. 
Now, we know that ( , ; ) 0rK P Q W ≥  

1 1

1

tan
4

n
r r
i i

i

p q
π− −

=

 
⇒ ≥ 

 
∑

                                          (16)

 

Letting 

1

n

i n
n

i

i

i

D
q

D

−

−

=

=

∑
 in equation (16), we get 

1

1

1

1

tan
4

r

nn
r

i i n
ni

i

i

i

D
w p

D

π

−

−
−

−=

=

  
  
   ≥ 

  
    

∑
∑

 

1

(1 )

1 1

r
n n

n r nr
i i

i i

i iw p D D

−

− − −

= =

 
⇒ ≥ 

 
∑ ∑

                      (17)

 

(or (1 )

1 1

log ( 1) log
n n

n r nr
D i i D

i i

i iw p D r D
− − −

= =

   
− ≤ −   

   
∑ ∑

  (18)

 

Adding, 

1

log
n

r
D i i

i

w p
=

 
 
 
∑

 (18) provides

1

( ) ( ; ) log )
n

nr
r D

i

iL W H P W D
−

=

 
= −  

 
∑  

1

( ) ( ; ) log )
n

nr
r D

i

iL W H P W D
−

=

 
= −  

 
∑ which proves the 

theorem. 
Note: The possible measure of entropy ( ; )rH P W

reduces to Renyi’s (1961) entropy after ignoring the 
weights. 
Next, we provide another interesting correspondence.  

Theorem 2.4: If  
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n
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decipherable codes, then 
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weighted entropy and ( )L W  is some  weighted function. 

Proof: To prove the above theorem, we employ Gurdial 
and Pessoa’s (1977) fundamental theorem which states 
that  
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is parametric weighted code word length again 
introduced by Gurdial and Pessoa (1977). 
From equation (19), we have  
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is neither any weighted mean codeword length nor its 
monotonic increasing function. Hence the theorem. 

III. CONCLUSION 

It can be shown that taking into consideration the 
existing as well as new entropy measures, many new 
coding theorems can be proved and consequently,  

any new codeword lengths can be developed. The 
advantage of this technique is that many new measures 
of entropy via coding theorems can be developed. The 
work can further be extended for other entropy 
measures.  
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